-- Newton's cradle: array of balls suspended from two strings, demonstrating conservation of energy / momentum
-- Strings are modeled with distance joints, which means they behave more like rods.
local world
local frame
local framePose
local balls = {}
local count = 10
local radius = 1 / count / 2
-- small air gap between balls results in collisions in separate frames, to carry impulse through to last ball
-- without this gap the physics engine would need to calculate transfer of impulses between contacts
local gap = 0.01
function lovr.load()
world = lovr.physics.newWorld({ restitutionThreshold = .05 })
-- a static geometry from which balls are suspended
local size = vec3(1.2, 0.1, 0.3)
frame = world:newBoxCollider(vec3(0, 2, -2), size)
frame:setKinematic(true)
framePose = lovr.math.newMat4(frame:getPose()):scale(size)
-- create balls along the length of frame and attach them with two distance joints to frame
for x = -0.5, 0.5, 1 / count do
local ball = world:newSphereCollider(vec3(x, 1, -2), radius - gap)
ball:setRestitution(1.0)
table.insert(balls, ball)
lovr.physics.newDistanceJoint(frame, ball, vec3(x, 2, -2 + 0.25), vec3(x, 1, -2))
lovr.physics.newDistanceJoint(frame, ball, vec3(x, 2, -2 - 0.25), vec3(x, 1, -2))
end
-- displace the last ball to set the Newton's cradle in motion
local lastBall = balls[#balls]
lastBall:applyLinearImpulse(.6, 0, 0)
lovr.graphics.setBackgroundColor(0.1, 0.1, 0.1)
end
function lovr.draw(pass)
pass:setColor(0, 0, 0)
pass:box(framePose)
pass:setColor(1, 1, 1)
for i, ball in ipairs(balls) do
local position = vec3(ball:getPosition())
pass:sphere(position, radius)
end
end
function lovr.update(dt)
world:update(dt)
end